
The White Hat’s Advantage: 

Open-source OWASP tools to aid 

in penetration testing coverage 

Ken Prole

October 25, 2018



About me

Ken Prole

CTO, Code Dx 
Principal Investigator, Secure Decisions

Applied Visions, Inc.
▪ Software development since 1987
▪ Primarily develops business applications

dba, Secure Decisions
▪ Cyber R&D, focusing on application security
▪ Primarily serving DHS and DoD,

some intelligence and commercial projects

Code Dx, Inc.
▪ Spin-out to commercialize DHS-funded AppSec R&D

▪ Project lead for Code Pulse and 
Attack Surface Detector (ASD)

▪ 20+ years of software development 
experience

▪ Passionate about helping organizations 
build more secure software



Overview
▪ Summary of tools

▪ The White Hat’s advantage

▪ Typical penetration testing workflow

▪ The importance of understanding the attack surface

OWASP Code Pulse
▪ Challenges addressed, how it works, demo

OWASP Attack Surface Detector (ASD)
▪ Challenges addressed, how it works, demo

Wrap-up 
▪ Where to learn more

▪ Q&A

Outline of today’s talk

Making black box testing less opaque



Overview

Overview of tools; pen-testing workflow; 
understanding application attack surface



Provides insight into the real-time code 
coverage of black box testing activities 
by monitoring the execution of the web 
application.

Provides a complete picture of a web 
application’s exposed attack surface. Output 
used to “pre-seed” ZAP and Burp Suite for 
more thorough pen testing.

OWASP Code Pulse

code-pulse.com



White Hats have plenty of disadvantages over their 
malicious counterparts

• Huge task of securing web app against all
vulnerabilities

• Very limited time

• Hard to lock-step with dev team

There are a few advantages we can leverage with 
better penetration testing tools:

• Access to server binaries/bytecode

• Access to server-side source code

The White Hat advantage

Breakers

Ethical Hackers

White Hat Pen Testers



Zed Attack Proxy
(ZAP)



Typical penetration testing workflow

Penetration Tester
Web Application

Authenticate with different user roles1

Endpoint enumeration

Manually map out the application

Automated spider/crawler

Brute force/forced browsing

Vulnerability discovery (passive, active, fuzzing) 

2

3

Attack Surface



9







OWASP Code Pulse

A real-time code coverage visualization tool for 
penetration testing activities



“The penetration tester should look at the coverage of the web 
application or of its attack surface to know if the tool was 
configured correctly or was able to understand the web 
application. 

Wikipedia, Web application security scanner



Did testing reach all parts of the application?

For actions just performed, which parts of the source code were executed?

Which tools are getting better coverage?

Which testers are getting better coverage?

How can I tune testing to get better coverage?

How can I communicate testing coverage?

Penetration testing challenges addressed by Code Pulse

Coverage gaps Tuning Communication



Code Coverage

for Penetration Testing 
Activities

Real-Time

Visual

Code Pulse



Code Pulse

Real-time code coverage visualization tool for 
penetration testing activities



Black Box Perspective

Pentesting

Code Pulse Agent

Real-Time
Coverage 
Information

Glass Box Perspective

Transparency Feedback Tuning



Penetration Testing Coverage



Coverage scenario

Test Coverage 
Monitoring

Automated Testing

OWASP ZAP

Code Pulse



1st Scan, Spider + Active Scan



21
1st Scan, Spider + Active Scan



1st Scan, Spider + Active Scan



23
1st Scan, Spider + Active Scan



24
2nd Scan, Login + Spider + Active Scan



3rd Scan, Manual Browsing + Spider + Active Scan



3rd Scan, Manual Browsing + Spider + Active Scan



1st scan 2nd scan

3rd scan



See overlap between manual and automated testing



Compare tools



Compare testers



Live demonstration



Uncover your hidden attack surface!



33

PROBLEM Current penetration techniques miss parts of attack 
surface or revert to endpoint brute forcing 

GOAL Develop an open source solution that provides a complete 
picture of the web applications exposed attack surface, 
pre-seed existing testing tools for more thorough and 
targeted testing



Abbreviates pen testing efforts by automating the attack surface discovery process

Discovers hidden/unlinked endpoints and optional parameters and data types

Pre-seeds ZAP and Burp Suite with attack surface

Compares different versions of an application to focus testing on new/modified 
endpoints

What Attack Surface Detector provides



Performs static source code analysis to identify web application endpoints by 
parsing routes and identifying parameters in the supported languages and 
frameworks

Supported languages and frameworks:

How Attack Surface Detector works



Minimize attack surface gaps
▪ Black box testing by penetration testers can miss unlinked 

endpoints without extensive endpoint brute forcing

▪ Mapping the full attack surface allows for testing of any unlinked 
endpoints

Parameter detection
▪ Identifying optional parameters during a black box test can be 

time-consuming and often miss valid parameters that affect the 
execution of the software

▪ Provides a more thorough list of parameters allowing more 
comprehensive and focused testing

Attack Surface Detector benefits



DAST Pre-Seeding
▪ Manual penetration testing is costly and time-consuming

▪ Provides common web application DAST tools (e.g. ZAP, Burp 
Suite) with endpoints and parameters objectively focusing on the 
manual and automated testing tasks

Time reduction
▪ Reduces the time required to enumerate an application attack 

surface

▪ Compare different versions of an application allowing for focus on 
new/modified endpoints

Attack Surface Detector benefits



Available today directly in ZAP and Burp via extensions

38

Zed Attack Proxy
(ZAP)



Live demonstration



Before Pre-Seeding After Pre-Seeding



Before Pre-Seeding After Pre-Seeding



Before Pre-Seeding After Pre-Seeding

+20
+3
+33
+14





Without Attack Surface Detector

With Attack Surface Detector: 29% improvement





The attack-surface-detector-cli takes in a folder containing code and 
outputs the set of endpoints detected within that codebase

Optionally they can be saved to a JSON file

This JSON can then be imported by the Burp and ZAP plugins

Attack Surface Detector Command Line Interface (CLI)



Wrap-up

Where to learn more; Q&A



OWASP Code Pulse: 
http://www.code-pulse.com
https://www.owasp.org/index.php/OWASP_Code_Pulse_Project

OWASP Attack Surface Detector: 
https://www.owasp.org/index.php/OWASP_Attack_Surface_Detector_Project

OWASP ZAP: 
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

OWASP WebGoat: https://www.owasp.org/index.php/OWASP_WebGoat_Project

OWASP Dependency Check: 
https://www.owasp.org/index.php/OWASP_Dependency_Check

Contoso University: https://bit.ly/2mPlDDo

Burp Suite: https://portswigger.net/burp

Where to learn more 

http://www.code-pulse.com/
https://www.owasp.org/index.php/OWASP_Code_Pulse_Project
https://www.owasp.org/index.php/OWASP_Attack_Surface_Detector_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_WebGoat_Project
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://bit.ly/2mPlDDo
https://portswigger.net/burp


Contact information

Ken Prole

CTO, Code Dx 
Principal Investigator, Secure Decisions

@KenProle
ken.prole@codedx.com

mailto:ken.prole@codedx.com


50




























