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Introduction
§ Problem
§ Motivation for looking into human factors of software engineering and AppSec
§ Our DARPA research project

Human factors that suggest where vulnerabilities are more likely
§ Developer behaviors & characteristics
§ Environmental conditions
§ Team characteristics

Wrap-up
§ Discussion about future ways to study human factors in software engineering
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Outline of today’s talk

PART I

PART II

PART III



Introduction

Part I
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A single software vulnerability can cascade into 
tens of thousands of cyber incidents

Heartbleed
§ Two years to detect in OpenSSL
§ Estimated that 500,000 web servers were affected [1]

Equifax breach
§ Single Struts vulnerability CVE-2017-5638
§ Exposed personal information of 147.9 million Americans [2]

Heartland Payment Systems
§ SQL injection vulnerability known for years
§ Exposed 134 million credit cards [3]

And many more…

[1] Based on Synopsys estimate using 2014 Netcraft Web Server Survey data, http://heartbleed.com/
[2] B. Fung, “Equifax’s massive 2017 data breach keeps getting worse,” Washington Post. [Online].
[3] “Heartland Payment Systems,” Wikipedia. 02-Aug-2018.

http://heartbleed.com/
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What if we could identify code more likely to be vulnerable 
based on the human factors in play when it was written?

AppSec analysts & 
developers could better 
focus on suspect code
§ Manual code review
§ SAST finding investigation

Development managers 
could foster work 
environments more 
conducive to secure code 
development



Psychological
§ Reaction time
§ Attention
§ Learning
§ Short term & long term memory
§ Decision making
§ Collaboration & conflict
§ Communication
§ Cultural norms & conventions
§ And many more…
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Human factors are properties of people

Physiological
§ Visual acuity
§ Hearing sensitivity
§ Fatigue
§ Circadian rhythm
§ Endurance
§ Strength
§ Temperature tolerance
§ Health
§ And many more…

Human factors psychology and engineering account for these factors
in the design and engineering of products, processes, and systems

Group

Individual



Transportation
§ Federal Aviation Administration  

publishes “Dirty Dozen” list of 12 
human factors that lead to accidents

§ National Transportation Safety Board 
performs root cause analysis accident 
investigations

Medicine & healthcare
§ World Health Organization, National 

Institutes of Health (NIH), and others 
publish educational materials

Occupational safety
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Human factors are widely known to affect performance & safety
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We’ve been studying how human factors affect secure code 
development

We wanted more ways to prevent the introduction of vulnerabilities,
and different ways to locate vulnerable code
§ Are there specific characteristics of developers, teams or work environment that influence secure code 

development?
§ Human factors are known to influence safety and security in other domains 
§ Human factors are common across people, & many are stable over time

We proposed a research project to DARPA
§ Investigate human factors that affect the security of application source code
§ Awarded Phase I SBIR late last year – 9 months – to see if methods and results were promising
§ Recently selected to continue the research into Phase II – 2 years starting in 2019



Identify human factors that correlate with the security & quality of source code
§ Developer behaviors & characteristics

– Experience / training
– File editing behavior
– Focused attention
– Communication form and quality
– Hours worked

We used two measures of security & quality:
1. Publicly disclosed vulnerabilities
2. Security and select quality weaknesses

found by static application security tests (SAST)
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Overview of our DARPA-funded research

§ Team characteristics
– Number of developers
– Collaboration
– Longevity as a team
– Geographic proximity

§ Environmental conditions
– Programming language
– Open vs. proprietary 

development
– Ambient noise
– Interruptions



We analyzed repositories and data from projects developed 
in both open source and proprietary SE environments

SE environment Name of repository Portion of 
repository studied

Primary 
language

Lines of 
code

% repo in primary 
lang.

# of 
commits

Open Chromium ui/base directory C++ 38,335 96.92% 3,880
Open Apache HTTP server directory C 42,969 98.47% 4,701

Proprietary ChatSecure Android All Java 37,213 99.63% 2,907
Proprietary Project D All C# 289,993 98.87% 808 *

* Only a subset of the total 3,523 commits were analyzed because C# static code analyzers require the software to be built before
testing, which would have required more time and resources than available in Phase I

Repository Multi-year period dates Range duration 6-month period dates
Chromium 1/2011 – 11/2017 6 years 7/2016 – 1/2017

Apache HTTP 6/1999 – 2/2018 19 years 7/2016 – 1/2017
ChatSecure Android 3/2010 – 1/2018 8 years 2/2015 – 8/2015

Project D 8/2014 – 8/2016 2 years 2/2015 – 8/2015

Studied relationships over both multi-year and 6-month periods
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Human factors

Part II
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Unfocused contribution is an indicator of how much attention developers focus on 
specific files being developed
§ A file has high unfocused contribution when:

– Developers of a file are also busy modifying other files, or
– When the number of unique contributors to a file increases

§ Measured using a PageRank centrality score

More unfocused contribution → more insecure code
§ In multi-year analyses of all four repositories, 

more diffuse attention correlated with:
– Greater likelihood of publicly disclosed vulnerabilities
– More SAST findings, by type
– More SAST findings, across all types

§ Results less clear for individual SAST 
types in 6-month period of repository activity

Developer behaviors 
& characteristics

Diffusion of developer attention across files is 
associated with insecure code
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Context switching was measured using number of distinct billing codes charged on time card

Excessive work was measured by number of work hours recorded by each developer

More SAST findings found in source code that was committed after periods when developers: 
§ Distributed their time across more unique billing codes, i.e. more context switching or multi-tasking
§ Worked more hours

Developer behaviors 
& characteristics

Multi-tasking and excessive work have small, 
significant effects on source code security

Spearman rank correlation between predictor and
number of new & unresolved SAST findings,
multi-year period for AVI proprietary project

Predictor
Number of charge codes in

7 days prior to commit
Number of charge codes

since last commit

Unique billing codes rho = 0.17
p-value < 0.01

rho = 0.12
p-value < 0.01

Number of hours billed rho = 0.19
p-value < 0.01

rho = 0.11
p-value < 0.01
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Time of day of developer activity measured using six 4-hour periods:
§ Time of commit, developer’s local time zone

No correlation was found between commit time period and the number of 
weaknesses found by SAST tools

Developer behaviors 
& characteristics

Time of day when code is committed is not always 
associated with its security
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In Chromium, files with a vulnerability in their history 
had significantly more of their lifetime churn 
committed during typically low-alertness times of day

Developer behaviors 
& characteristics

Time of day when code is committed correlates 
with some security outcome measures

Notional chart of typical circadian rhythm 

Significant Mann-Whitney-Wilcoxon test result,
multi-year period for Chromium

Commit time, 
developer’s local 

time of day

Significantly more median churn
in files with a vulnerability

than in neutral files *

0—4 ü

4—8
8—12

12—16 ü

16—20
20—24 ü

* Neutral files are those with no publicly disclosed vulnerability



Programming language might affect software error rate

Mixed evidence that language affects quality
§ “C++ code is less complex, less prone to errors and requires 

less effort to maintain [than C code]” [1]
§ “Compiled strongly-typed languages are significantly less 

prone to runtime failures than interpreted or weakly-typed 
languages” [2]

§ Other researchers have not found correlations [2]

It’s difficult to control for developer experience

Environmental conditions
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[1] P. Bhattacharya and I. Neamtiu, “Assessing Programming Language Impact on Development and Maintenance: A Study on C and C++,” p. 10, 
May 2011.
[2] S. Nanz and C. A. Furia, “A Comparative Study of Programming Languages in Rosetta Code,” 2015 IEEE/ACM 37th IEEE International Conference 
on Software Engineering, pp. 778–788, May 2015.

Compiled, strongly-typed languages are
less prone to runtime failures [2]

Fewer
runtime
failures

More
runtime
failures



Perhaps a bystander effect?
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Team size is simply the number of developers

The more developers that work on a file, the more likely 
it is to have security weaknesses and vulnerabilities
§ In two open source repositories that we analyzed (see table)
§ In two proprietary repositories that we analyzed

– Files with more developers have more SAST findings,
in both the multi-year and 6-month sample windows

§ In the Linux kernel, source code “files with changes from nine 
or more developers were 16 times more likely to have a 
vulnerability” [1, p. 453]

§ At Microsoft, Windows Vista study

Team characteristics
Bigger teams are correlated with less secure code

Median # of developers, multi-year open source repo

Files with at least one vulnerability Files with no vulnerabilities
Chromium 7 developers 1 developer

Apache HTTP 15 developers 1 developer

[1] A. Meneely and L. Williams, “Secure Open Source Collaboration: An Empirical Study of Linus’ Law,” in Proceedings of the 16th ACM Conference on 
Computer and Communications Security, New York, NY, USA, 2009, pp. 453–462 [Online]. Available: http://doi.acm.org/10.1145/1653662.1653717
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Interactive churn is the number of source code lines

that a developer modifies that were last modified by 

another developer

Files with a known vulnerability in their history have more 

interactive churn than files without a known vulnerability

§ Chromium: almost 5 times more interactive churn

§ Apache Web Server: >11 times more interactive churn

In ChatSecure Android interactive churn found more findings 

for 16% of SAST weaknesses types

Developer behaviors 
& characteristics

Lots of editing of others’ code is associated with 
vulnerabilities in open source software

Interactive churn median SLOC, multi-year period

Files with one or more vulnerabilities Neutral files 

*

Chromium 1,201 SLOC 250 SLOC

Apache HTTP 5,265 SLOC 447 SLOC

…
…
…

…

…

My way!

…
…
…

…

…

My way!

…
…
…

…

…

My way!

* 
Neutral files are 

those with no 

publicly disclosed 

vulnerability
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Files worked by multiple, separate clusters of developers are more likely to be 
vulnerable [2, p. 783], [3, p. 460]

Developers working too much on only their own code increases the chance of 
vulnerabilities [1, p. 71]

Team characteristics
Lack of collaboration increases likelihood of 
vulnerabilities

[1] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When a Patch Goes Bad: Exploring the Properties of Vulnerability-
Contributing Commits,” in 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, 2013, pp. 65–74.
[2] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of 
Software Vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787, 2011.
[3] A. Meneely and L. Williams, “Secure Open Source Collaboration: An Empirical Study of Linus’ Law,” in Proceedings of the 16th ACM Conference 
on Computer and Communications Security, New York, NY, USA, 2009, pp. 453–462 [Online]. Available: 
http://doi.acm.org/10.1145/1653662.1653717
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Microsoft studied the post-release failure rate for Windows Vista binaries 
authored by co-located and distributed teams
§ Determined team co-location based on whether 75% of developers committing to the 

binary’s source code shared the same building, cafeteria, campus, locality, or continent

Virtually same number of failures between co-located and distributed teams
§ Binaries authored by distributed teams had ≤6% higher rate of failure

Found that only team size could explain differences between binary failure rates

Team characteristics
Co-location of team members did not materially 
affect code quality at Microsoft

[1] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does distributed development affect software quality? An empirical case study of 
Windows Vista,” 2009, pp. 518–528.



Wrap-up

Part III
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When we can use human factors to identify code more likely 
to be vulnerable, then …

Analysts triaging SAST findings can focus on code written under work conditions or 
other human factors associated more insecure code

Manual code reviews can focus on code written by developers or dev teams whose 
characteristics (e.g. team size) or environment (e.g. time of day) suggest 
vulnerabilities are more likely

Development managers can change the work environment to be more conducive to 
secure code development
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Discussion time! How can we further assess human factors 
that influence code security and quality?

Some ideas:
§ Concurrent analysis of developers as they code

– Capture data about developers that’s otherwise lost: 
e.g. noise, fatigue, team communications, new training

– Could be done in proprietary development environments
– Could it be done in open source environments?

§ Vulnerability history project (Rochester Institute of Technology)
– Database of historical context & root cause analysis of open source 

vulnerabilities
§ Hackathons

– Could experimentally control factors such as goals, team size & diversity,
level of collaboration, type and degree of distraction

§ Embed security champions into open source development teams, then measure 
effects of influencers
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