
Human factors that
influence secure software
development

Dr. Anita D’Amico
Chris Horn

Approved for public release, distribution unlimited

2

About the speakers

Chris Horn
Product management at Code Dx
Researcher, Secure Decisions

Dr. Anita D’Amico
CEO, Code Dx
Director, Secure Decisions

Applied Visions, Inc.
§ Software development since 1987
§ Primarily develops business applications

dba, Secure Decisions
§ Cyber R&D, focusing on application security
§ Primarily serving DHS and DoD,

some commercial companies
Code Dx, Inc.

§ Spin-out to commercialize DHS-funded AppSec R&D

Introduction
§ Problem
§ Motivation for looking into human factors of software engineering and AppSec
§ Our DARPA research project

Human factors that suggest where vulnerabilities are more likely
§ Developer behaviors & characteristics
§ Environmental conditions
§ Team characteristics

Wrap-up
§ Discussion about future ways to study human factors in software engineering

3

Outline of today’s talk

PART I

PART II

PART III

Introduction

Part I

4

5

A single software vulnerability can cascade into
tens of thousands of cyber incidents

Heartbleed
§ Two years to detect in OpenSSL
§ Estimated that 500,000 web servers were affected [1]

Equifax breach
§ Single Struts vulnerability CVE-2017-5638
§ Exposed personal information of 147.9 million Americans [2]

Heartland Payment Systems
§ SQL injection vulnerability known for years
§ Exposed 134 million credit cards [3]

And many more…

[1] Based on Synopsys estimate using 2014 Netcraft Web Server Survey data, http://heartbleed.com/
[2] B. Fung, “Equifax’s massive 2017 data breach keeps getting worse,” Washington Post. [Online].
[3] “Heartland Payment Systems,” Wikipedia. 02-Aug-2018.

http://heartbleed.com/

6

What if we could identify code more likely to be vulnerable
based on the human factors in play when it was written?

AppSec analysts &
developers could better
focus on suspect code
§ Manual code review
§ SAST finding investigation

Development managers
could foster work
environments more
conducive to secure code
development

Psychological
§ Reaction time
§ Attention
§ Learning
§ Short term & long term memory
§ Decision making
§ Collaboration & conflict
§ Communication
§ Cultural norms & conventions
§ And many more…

7

Human factors are properties of people

Physiological
§ Visual acuity
§ Hearing sensitivity
§ Fatigue
§ Circadian rhythm
§ Endurance
§ Strength
§ Temperature tolerance
§ Health
§ And many more…

Human factors psychology and engineering account for these factors
in the design and engineering of products, processes, and systems

Group

Individual

Transportation
§ Federal Aviation Administration

publishes “Dirty Dozen” list of 12
human factors that lead to accidents

§ National Transportation Safety Board
performs root cause analysis accident
investigations

Medicine & healthcare
§ World Health Organization, National

Institutes of Health (NIH), and others
publish educational materials

Occupational safety

8

Human factors are widely known to affect performance & safety

9

We’ve been studying how human factors affect secure code
development

We wanted more ways to prevent the introduction of vulnerabilities,
and different ways to locate vulnerable code
§ Are there specific characteristics of developers, teams or work environment that influence secure code

development?
§ Human factors are known to influence safety and security in other domains
§ Human factors are common across people, & many are stable over time

We proposed a research project to DARPA
§ Investigate human factors that affect the security of application source code
§ Awarded Phase I SBIR late last year – 9 months – to see if methods and results were promising
§ Recently selected to continue the research into Phase II – 2 years starting in 2019

Identify human factors that correlate with the security & quality of source code
§ Developer behaviors & characteristics

– Experience / training
– File editing behavior
– Focused attention
– Communication form and quality
– Hours worked

We used two measures of security & quality:
1. Publicly disclosed vulnerabilities
2. Security and select quality weaknesses

found by static application security tests (SAST)

10

Overview of our DARPA-funded research

§ Team characteristics
– Number of developers
– Collaboration
– Longevity as a team
– Geographic proximity

§ Environmental conditions
– Programming language
– Open vs. proprietary

development
– Ambient noise
– Interruptions

We analyzed repositories and data from projects developed
in both open source and proprietary SE environments

SE environment Name of repository Portion of
repository studied

Primary
language

Lines of
code

% repo in primary
lang.

of
commits

Open Chromium ui/base directory C++ 38,335 96.92% 3,880
Open Apache HTTP server directory C 42,969 98.47% 4,701

Proprietary ChatSecure Android All Java 37,213 99.63% 2,907
Proprietary Project D All C# 289,993 98.87% 808 *

* Only a subset of the total 3,523 commits were analyzed because C# static code analyzers require the software to be built before
testing, which would have required more time and resources than available in Phase I

Repository Multi-year period dates Range duration 6-month period dates
Chromium 1/2011 – 11/2017 6 years 7/2016 – 1/2017

Apache HTTP 6/1999 – 2/2018 19 years 7/2016 – 1/2017
ChatSecure Android 3/2010 – 1/2018 8 years 2/2015 – 8/2015

Project D 8/2014 – 8/2016 2 years 2/2015 – 8/2015

Studied relationships over both multi-year and 6-month periods

11

Human factors

Part II

12

Less Unfocused contribution More

of

 fi
nd

in
gs

file

Unfocused contribution is an indicator of how much attention developers focus on
specific files being developed
§ A file has high unfocused contribution when:

– Developers of a file are also busy modifying other files, or
– When the number of unique contributors to a file increases

§ Measured using a PageRank centrality score

More unfocused contribution → more insecure code
§ In multi-year analyses of all four repositories,

more diffuse attention correlated with:
– Greater likelihood of publicly disclosed vulnerabilities
– More SAST findings, by type
– More SAST findings, across all types

§ Results less clear for individual SAST
types in 6-month period of repository activity

Developer behaviors
& characteristics

Diffusion of developer attention across files is
associated with insecure code

14

Context switching was measured using number of distinct billing codes charged on time card

Excessive work was measured by number of work hours recorded by each developer

More SAST findings found in source code that was committed after periods when developers:
§ Distributed their time across more unique billing codes, i.e. more context switching or multi-tasking
§ Worked more hours

Developer behaviors
& characteristics

Multi-tasking and excessive work have small,
significant effects on source code security

Spearman rank correlation between predictor and
number of new & unresolved SAST findings,
multi-year period for AVI proprietary project

Predictor
Number of charge codes in

7 days prior to commit
Number of charge codes

since last commit

Unique billing codes rho = 0.17
p-value < 0.01

rho = 0.12
p-value < 0.01

Number of hours billed rho = 0.19
p-value < 0.01

rho = 0.11
p-value < 0.01

16

Time of day of developer activity measured using six 4-hour periods:
§ Time of commit, developer’s local time zone

No correlation was found between commit time period and the number of
weaknesses found by SAST tools

Developer behaviors
& characteristics

Time of day when code is committed is not always
associated with its security

0.92 0.95 1.00 0.96 0.92 0.880.93 0.92 0.96 0.95 1.00
0.910.88 0.93

1.00
0.85 0.84 0.84

0.0
0.2
0.4
0.6
0.8
1.0

00:00 – 04:00 04:00 – 08:00 08:00 – 12:00 12:00 – 16:00 16:00 – 20:00 20:00 – 24:00

Fi
nd

in
gs

 p
er

 c
om

m
it

(n
or

m
al

ize
d)

Time of commit (developer local) Chromium ChatSecure Android Project D

17

In Chromium, files with a vulnerability in their history
had significantly more of their lifetime churn
committed during typically low-alertness times of day

Developer behaviors
& characteristics

Time of day when code is committed correlates
with some security outcome measures

Notional chart of typical circadian rhythm

Significant Mann-Whitney-Wilcoxon test result,
multi-year period for Chromium

Commit time,
developer’s local

time of day

Significantly more median churn
in files with a vulnerability

than in neutral files *

0—4 ü

4—8
8—12

12—16 ü

16—20
20—24 ü

* Neutral files are those with no publicly disclosed vulnerability

Programming language might affect software error rate

Mixed evidence that language affects quality
§ “C++ code is less complex, less prone to errors and requires

less effort to maintain [than C code]” [1]
§ “Compiled strongly-typed languages are significantly less

prone to runtime failures than interpreted or weakly-typed
languages” [2]

§ Other researchers have not found correlations [2]

It’s difficult to control for developer experience

Environmental conditions

18

[1] P. Bhattacharya and I. Neamtiu, “Assessing Programming Language Impact on Development and Maintenance: A Study on C and C++,” p. 10,
May 2011.
[2] S. Nanz and C. A. Furia, “A Comparative Study of Programming Languages in Rosetta Code,” 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, pp. 778–788, May 2015.

Compiled, strongly-typed languages are
less prone to runtime failures [2]

Fewer
runtime
failures

More
runtime
failures

Perhaps a bystander effect?

19

Team size is simply the number of developers

The more developers that work on a file, the more likely
it is to have security weaknesses and vulnerabilities
§ In two open source repositories that we analyzed (see table)
§ In two proprietary repositories that we analyzed

– Files with more developers have more SAST findings,
in both the multi-year and 6-month sample windows

§ In the Linux kernel, source code “files with changes from nine
or more developers were 16 times more likely to have a
vulnerability” [1, p. 453]

§ At Microsoft, Windows Vista study

Team characteristics
Bigger teams are correlated with less secure code

Median # of developers, multi-year open source repo

Files with at least one vulnerability Files with no vulnerabilities
Chromium 7 developers 1 developer

Apache HTTP 15 developers 1 developer

[1] A. Meneely and L. Williams, “Secure Open Source Collaboration: An Empirical Study of Linus’ Law,” in Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA, 2009, pp. 453–462 [Online]. Available: http://doi.acm.org/10.1145/1653662.1653717

20

Interactive churn is the number of source code lines

that a developer modifies that were last modified by

another developer

Files with a known vulnerability in their history have more

interactive churn than files without a known vulnerability

§ Chromium: almost 5 times more interactive churn

§ Apache Web Server: >11 times more interactive churn

In ChatSecure Android interactive churn found more findings

for 16% of SAST weaknesses types

Developer behaviors
& characteristics

Lots of editing of others’ code is associated with
vulnerabilities in open source software

Interactive churn median SLOC, multi-year period

Files with one or more vulnerabilities Neutral files

*

Chromium 1,201 SLOC 250 SLOC

Apache HTTP 5,265 SLOC 447 SLOC

…
…
…

…

…

My way!

…
…
…

…

…

My way!

…
…
…

…

…

My way!

*
Neutral files are

those with no

publicly disclosed

vulnerability

21

Files worked by multiple, separate clusters of developers are more likely to be
vulnerable [2, p. 783], [3, p. 460]

Developers working too much on only their own code increases the chance of
vulnerabilities [1, p. 71]

Team characteristics
Lack of collaboration increases likelihood of
vulnerabilities

[1] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When a Patch Goes Bad: Exploring the Properties of Vulnerability-
Contributing Commits,” in 2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement, 2013, pp. 65–74.
[2] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of
Software Vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787, 2011.
[3] A. Meneely and L. Williams, “Secure Open Source Collaboration: An Empirical Study of Linus’ Law,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, New York, NY, USA, 2009, pp. 453–462 [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653717

22

Microsoft studied the post-release failure rate for Windows Vista binaries
authored by co-located and distributed teams
§ Determined team co-location based on whether 75% of developers committing to the

binary’s source code shared the same building, cafeteria, campus, locality, or continent

Virtually same number of failures between co-located and distributed teams
§ Binaries authored by distributed teams had ≤6% higher rate of failure

Found that only team size could explain differences between binary failure rates

Team characteristics
Co-location of team members did not materially
affect code quality at Microsoft

[1] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does distributed development affect software quality? An empirical case study of
Windows Vista,” 2009, pp. 518–528.

Wrap-up

Part III

24

When we can use human factors to identify code more likely
to be vulnerable, then …

Analysts triaging SAST findings can focus on code written under work conditions or
other human factors associated more insecure code

Manual code reviews can focus on code written by developers or dev teams whose
characteristics (e.g. team size) or environment (e.g. time of day) suggest
vulnerabilities are more likely

Development managers can change the work environment to be more conducive to
secure code development

25

Discussion time! How can we further assess human factors
that influence code security and quality?

Some ideas:
§ Concurrent analysis of developers as they code

– Capture data about developers that’s otherwise lost:
e.g. noise, fatigue, team communications, new training

– Could be done in proprietary development environments
– Could it be done in open source environments?

§ Vulnerability history project (Rochester Institute of Technology)
– Database of historical context & root cause analysis of open source

vulnerabilities
§ Hackathons

– Could experimentally control factors such as goals, team size & diversity,
level of collaboration, type and degree of distraction

§ Embed security champions into open source development teams, then measure
effects of influencers

26

Contact information

Chris Horn
Product management at Code Dx
Researcher, Secure Decisions

@chornsec
chorn@codedx.com

Dr. Anita D’Amico
CEO, Code Dx
Director, Secure Decisions

@AnitaDamico
Anita.DAmico@CodeDx.com

LET US KNOW

If you would like to participate in this type of research.
If you have a software repository you would like us to study.

