
1CodeDx.com

Five Application Security Testing Pointers for
Software Quality Assurance Professionals

Software quality assurance is a tough job. With frequent costly and extremely embarrassing cyberat-
tacks on company websites and networks, the job of software quality assurance (SQA) professional has
gotten even tougher. Traditionally, SQA professionals have been responsible for monitoring the soft-
ware development process to ensure design quality and to make sure that software adheres to a set
of coding standards established by their organization. But in today’s time-compressed world of rapid
releases and DevOps, the traditional SQA process has changed and broadened in scope.

More SQA professionals are now expected to perform application security testing. While it has been
generally recognized that software quality is strongly tied to an application’s security, testing with a
specific focus on detecting security vulnerabilities requires special knowledge, tools, and procedures.
Even if an application passes functional tests and is compliant with certain software standards, the
software may still be vulnerable to cyberattacks.

Operating in a world of rapid application development and agile development environments, SQA
professionals find themselves faced with more abbreviated testing schedules than ever before.
Management wants production quality software fast, leaving less time to properly test and approve
software applications for security. Consequently, SQA professionals are pressed for time, have more
standards to which their software needs to be compliant, have a set of functional tests that may not
reveal the security flaws in their software, and are under pressure from developers and management
to declare their software secure.

So what’s an SQA professional to do?

Here are five pointers to help SQA professionals build a robust application security testing environ-
ment to help reduce software security risks:

1.	 Study and learn the key aspects involved in application security testing
2.	 Know what vulnerabilities to look for in the software being developed
3.	 Understand the mindset of the attacker—know how they think and then test like an attacker
4.	 Learn how to incorporate security testing into your existing QA testing processes
5.	 Learn how to leverage application security testing and management tools

WHITE PAPER

2CodeDx.com

Pointer 1. Study and learn—know the key aspects of application security testing
Traditionally, SQA professionals have had just one focus: ensuring the quality and functionality of the
software they are testing and approving. Now, however, SQA professionals are also required to wear
an additional hat: security test professional.

Organizations often already have a security depart-
ment, so why ask SQA professionals to pitch in? Be-
cause everyone needs to be involved in securing the
software an organization develops, purchases, or
sells. It only makes sense for SQA teams to be relied
upon, as their end-user perspectives are invaluable
in identifying areas of an application where security
risks may be high.

The first step in gaining application security knowl-
edge for any SQA professional is to become familiar
with application security best practices. It is im-
portant to be trained on the basics of security and
secure coding practices, such as the fundamentals
of access control, encryption, and identifying and
protecting critical data sources. Most importantly,
SQA professionals should:

•• Understand the types of application security
testing, their value, and how to implement them
within your security testing environment (Pointer
5 discusses manual, static, and dynamic security
testing in greater detail)

•• Review the deployment environment for inse-
cure or incorrect configurations, security status
of the deployment server, and the protections
implemented for valuable data stores

•• Understand your typical end-user, and their secu-
rity aptitude and risk profile

•• Stay current on the latest exploits, tools, and
testing techniques—both manual and automated

•• Stay current on software industry and regulatory
standards

So why is security testing rigor so important?
Here’s a simple example. A fundamental applica-
tion security consideration is implementation of an
application’s access control—login and password
entry. In November 2011, a SplashData study
was done of 6 million username and password
combinations using data from companies whose
networks had been hacked. The study found 91%
of users had used one of the 1,000 most-com-
mon passwords. Remarkably, “password” was the
leader of them all, in use by 4.7 percent of user
accounts. In a followup study five years later, after
numerous security lectures, tutorials, and man-
dates from IT departments and systems admin-
istrators, little headway had been made towards
users choosing stronger, more hacker-resistant
passwords. Users continue to use passwords such
as 123456, password, qwerty, welcome, letmein,
and abc123. Such dangerous security behaviors by
users—and the poorly written software that allows
such poor user choices— makes it even easier for
hackers to break into an application. Robust pass-
word criteria and processes must be created within
applications to protect the software from intruders,
and from the lack of good judgement of its users.

https://www.teamsid.com/worst-passwords-of-2011/
http://www.digitaltrends.com/web/splashdata-worst-passwords/

3CodeDx.com

Next, become familiar with the software application you will be testing, including its security features.
SQA professionals should already have a clear understanding of the software application’s purpose,
use, functionality, and how it should and should not work. However, to perform security testing, SQA
professionals must also understand what security features are built into the software, why they were
created, how they are intended to work, and how they are not intended to work. They should look
for unexpected application behaviors and functions that shouldn’t be available or active. Finally, they
must be familiar with both the public and private interfaces to an application and its key data stores.

Pointer 2. Know what vulnerabilities to look for in the software you develop
Hackers attack software in other ways, not just through compromising user logins. It is critical for SQA
professionals to understand all the common vulnerabilities and be cognizant of the security features
that should be present in their applications. For those who don’t know where to start, the OWASP
(Open Web Application Security Project) Top 10 is a document describing the ten most critical web
application security flaws faced by organiza-
tions. Its purpose is to provide web application
security awareness and assist developers, SQA
and security teams in securing the software
they design, develop, and deploy. The most
recent list, published in 2013, includes the fol-
lowing vulnerabilities (in order of most critical
to least): Injection, Broken Authentication and
Session Management, Cross-Site Scripting
(XSS), Insecure Direct Object References, Secu-
rity Misconfiguration, Sensitive Data Exposure,
Missing Function Level Access Control, Cross-
Site Request Forgery (CSRF), Using Known
Vulnerable Components, and Unvalidated Re-
directs and Forwards. Early testing for software
weaknesses associated with the OWASP Top
10 is an effective first step towards the devel-
opment of secure code within an organization.

To assist SQA professionals to better under-
stand these vulnerabilities and test web ap-
plications to help build reliable and secure
software, OWASP has published the OWASP
Testing Guide (4.0), a comprehensive guide
and checklist that details successful security
testing principles and techniques in relation to
various software development life cycle phases.
The guide also provides “how to” testing for specific software security vulnerabilities.

According to Veracode, a large number of
applications fail the OWASP Top 10 upon initial
assessment. In the government market, 76 percent
failed, in retail and hospitality 70 percent failed, in
healthcare 69 percent failed, and in financial services
58 percent failed. These are inconceivable statistics
when these industries are so heavily regulated with
other industry standards, such as HIPAA (Health
Insurance Portability and Accountability Act), DISA
STIG (Defense Information Systems Agency Security
Technical Implementation Guide) and PCI‑DSS
(Payment Card Industry Data Security Standard).

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.veracode.com/directory/owasp-top-10
http://www.hhs.gov/hipaa/
http://iase.disa.mil/stigs/Pages/index.aspx
http://iase.disa.mil/stigs/Pages/index.aspx
https://www.pcisecuritystandards.org/pci_security/

4CodeDx.com

Pointer 3. Understand the mindset of
the attacker—know how they think, and
then test like them
Part of being a security test professional is get-
ting into the mindset of an attacker. Hackers will
research their targets and ask questions such as:
1.	 What information can I gather about this

application and its server?
2.	 What are the application entry points?
3.	 What open ports are there?
4.	 How can I bypass user authentication logic?
5.	 How can I gain root privileges?
6.	 Where are the “crown jewels” of information

stored, and how can I gain access to them?
7.	 What are the execution paths through the

application?

SQA professionals not only need functional
knowledge of application security, but also must
understand how attackers can attack their soft-
ware. They cannot dismiss threats that seem
bizarre, or assume that “nobody would ever try
that.” Hackers are extremely creative, and will try
anything to gain valuable information or disrupt
operations of an organization. Consequently, it is
critical to verify what the application will not allow
a user to do and how the application will behave
when given erroneous or unexpected data.

SQA professionals need to know where the most
important information is stored and the attack
paths that a hacker might take to reach that
information and extract it. In our data-rich world,
applications usually include databases full of
valuable, confidential information that, if leaked,
would cause tremendous issues for companies,
their employees, their partners, or their custom-
ers. A common example is a retail store’s point of
sale system being hacked and leaking its custom-
ers’ credit card information. In short, it is import-

ant to know what a hacker will be able to access if
they find a vulnerability, and how the application
will perform if it’s compromised.

Most applications implement role-based access
control to help administer security in an applica-
tion. Testing as an administrator, an authenticated
user, and as a non-authenticated user is important
to cover all the paths a hacker might use to pene-
trate an application. Administrators have different
access to various functions compared to normal
and guest users. So, SQA professionals need to
test from the perspectives of both less-privileged
users who has limited access to functionality as
well as administrative users with full access.

Pointer 4. Incorporate security testing
into your QA processes
When an application is tested, there is a standard
set of processes and tools used to ensure that
the software is functionally correct. A comparable
set of processes and tools must be implement-
ed and executed when testing for security. The
good news is that there is some overlap between
quality assurance testing and application security
testing practices, and these can be integrated
seamlessly into the quality testing process.

Understand the security goals established for
the project or application. To achieve software
quality goals, development teams make decisions
about coding standards they will use to devel-
op and verify software, such as use of GNU and
MISRA for C, PEAR for PHP, and CERT Secure
Coding Standards for several other programming
languages. Similarly, a set of prioritized security
goals should be identified and agreed upon. For
example, development, SQA, and security teams
can agree that an application should be in com-
pliance with the OWASP Top 10 or comply with
security rules stemming from an industry-specific
standard, such as HIPAA or PCI DSS.

https://www.gnu.org/prep/standards/standards.html
http://caxapa.ru/thumbs/468328/misra-c-2004.pdf
https://pear.php.net/
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards

5CodeDx.com

Learn the organization’s security policy. Know the protection mechanisms an application should
have, and the actions that should be implemented within an organization in the event of an attack.
For example, if you discover that a website breach has occurred and data compromised, what actions
should be taken? Will the website be shut down until the breach has been remedied and data re-
stored, or will the site remain active and data remain available to users despite the compromise? Does
the organization consider the availability of the website and its data to users a higher priority than the
website’s data confidentiality or integrity?

Create misuse test cases. SQA professionals often create use cases to develop functional testing
scenarios. Similarly, they can create misuse test cases that will help drive the development of soft-
ware security requirements. Misuse cases capture the possible attacks on an application as well as the
mitigation steps used to counter them. These test cases should focus on breaking the application and
what can be done to it rather than what the application should do. When defining misuse cases, SQA
professionals should consider all application users and their roles, including hostile users. They should
also reflect user omissions and errors, and care-
less or accidental inputs and actions. Some ex-
amples of misuse cases may include: manipulat-
ing user registration logic, providing erroneous
data or SQL into form fields and URLs, reviewing
in-transit data for lack of encryption, compromis-
ing application authentication, and manipulating
or exploiting server configurations.

Generate verifiable security requirements.
With security goals and security policy defined
and understood, security requirements can now
be established. SQA professionals can use the
same methods for developing functional require-
ments (defining what an application should do)
to develop security requirements (defining what
an application should not, do or should prevent
from happening). Just like good functional re-
quirements, good security requirements should
be explicit and verifiable. Security requirements
can be categorized according to security objec-
tive, for example, and prioritized based on the
risk that failure of the requirement might pose to
the application. Examples of verifiable security
requirements are:
Confidentiality requirements:
1.	 The system shall encrypt all user personally identifiable information, including username, pass-

word, name, address, contact information, account numbers, transactions, and balances.

The Confidentiality,
Integrity, and Avail-
ability triad (CIA) is
a model that helps
security teams better
understand the secu-
rity policy decisions
made by an organi-
zation. Essentially,
these three security
objectives are inter-
dependent, and if any one of them is compromised
it will impact the other two areas. The first objective,
confidentiality, involves protecting and concealing
information from unauthorized users and ensures
that authorized users have access to the appropriate
data. Integrity ensures the trustworthiness and accu-
racy of the data and that its representation remains
uncompromised. Availability involves ensuring that
information is promptly accessible to authorized us-
ers at all times. Understanding the importance and
priority of each objective with respect to an orga-
nization’s applications will help teams establish the
application security requirements.

http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
http://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA

6CodeDx.com

2.	 The system shall authorize access only to
those who have been identified and authenti-
cated.

3.	 The system shall implement and update an
audit log that includes information on all
failed login attempts, including username and
password used, timestamp, number of at-
tempts, and lockout time.

Data Integrity requirements:
1.	 A complete backup image of the server shall

be generated every four hours.
2.	 The operating system shall be configured to

implement RAID 5.
3.	 GNU Privacy Guard (GPG) shall be used to

encrypt all customer files.
System Availability requirements:
1.	 Security upgrades and patches shall be de-

ployed to the server within eight hours.
2.	 The application’s user data shall be available

to users 99 percent of the time.

Pointer 5. Leverage the right
combination of application security
testing (AST) tools
Application security testing has been rapidly
gaining momentum in recent years. In fact, 40%
of business-critical applications are continuously
tested for security, while only 23% were in 2012.
Although application security testing (AST) is on
the rise, in order to truly secure the nation’s soft-
ware supply chain 100% of business-critical ap-
plications need to be tested. Many organizations
are not familiar with application security testing
methodologies, don’t know how to use AST tools,
and can’t afford the cost or time to configure and
run them. Yet there are easy and affordable ways
for developers and SQA professionals to quickly
learn and conduct application security testing.

There are a few different AST methodologies. The
first is “white box,” or static testing. Just as with
functional white box testing, additional testing
that looks at actual code from a security perspec-
tive must be done. It is also good to establish
“black box,” or dynamic testing. This type of
testing, which examines an application’s security
functionality without actually looking at the code,
can identify critical functions that are penetrable
and open to compromise due to software design
flaws. In addition to static and dynamic applica-
tion security testing (SAST & DAST), there is also
hybrid testing, which correlates results of static
and dynamic tests to help determine which weak-
nesses are exploitable by an attacker.

Once the security goals, policies, misuse test
cases, and requirements are established, there
are a variety of tools designed to help uncover
the exploitable security vulnerabilities in software.
Manual code reviews are still conducted and
often find vulnerabilities that automated tools
don’t, but they can be extremely time consuming
and hard to scale. Therefore, most organizations
will need to rely on automated mechanisms to
review code for security vulnerabilities.

Although SQA professionals already use many
software quality assurance testing tools, it is
recommended they add AST tools to their testing
tool chest as well. Some existing quality assur-
ance tools offer some limited static analysis ca-
pability, however they may lack the vulnerability
correlation, de-duplication and reporting capabil-
ity that is important in helping to reduce the time
consumed by application security testing. Since
there are many different AST tools on the market,
it’s important to understand the characteristics of
this group of tools and the features and functions
that are essential in developing a robust AST
environment.

https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
https://codedx.com/appsec-classroom/sast-vs-dast-tools/

7CodeDx.com

The AST tool market is comprised of a healthy
mix of commercial, free and open source tools.
Commercial tools are typically expensive, and
while open source tools are free, they may also be
difficult to use, outdated, or not regularly main-
tained. What’s important to understand is that
no single tool will find every security vulnerability.
The average SAST tool identifies an average 14
percent of the security vulnerabilities within a
codebase. (Source: National Security Agency’s
(NSA) Center for Assured Software [CAS]). Each
tool has its strengths and weaknesses. Some
tools, for example, may be excellent at identifying
SQL injection vulnerabilities, whereas others may
be better at identifying Cross-Site Scripting vul-
nerabilities. Consequently, multiple tools should
be used to achieve identification of the most
comprehensive set of security vulnerabilities.

There are several key features to look for when
evaluating AST tools. Keep this list in mind when
selecting the right tools for your organization:

Number of supported programming languag-
es Some tools support a single language while
others support several. Consider the languages
used now and in the future, but remember those
in legacy systems.

Configurability of security rules The ability to con-
figure and create custom rules helps stem the tide
of false positives and better manage the volume
and types of vulnerabilities that are important to
your organization.

Vulnerability filtering A robust set of filters will
help expedite the isolation of critical vulnerabil-
ities, or those associated with specific software
and industry standards (such as OWASP Top 10,
HIPAA, and PCI DSS), codebase locations, or
remediation statuses.

Tool scalability If you have large codebases to
analyze, this is an important consideration. How
does the size of the codebase impact perfor-
mance? How long to get results?

Software library analysis Analysis of third-party
software libraries used in the code base is also
an essential part of performing a comprehensive
codebase security analysis.

Tool reporting Customizable reporting that fits
the needs of development, quality, security, and
management teams is a key feature to consider.

Tool collaboration Good communication between
development, quality, and security teams will help
expedite remediation of security vulnerabilities.

Eliminate the complexity of using multiple
tools. Once the right SAST and DAST tools have
been identified and run, the results of each tool
need to be combined, correlated, de-duplicated,
prioritized, and communicated to developers and
management clearly and effectively. Each tool’s
interface is different, and each assesses vulnera-
bilities differently—naming conventions, severity
scales, and reporting mechanisms are all different.
Processing such a large set of results is a very
time-consuming effort if performed manually.

It is here where software vulnerability manage-
ment systems have their greatest value. They
provide features that can reduce time, effort, and
cost. Here are some key features to keep in mind:

Compatibility Can the vulnerability management
system accept outputs of multiple commercial and
open source AST tools, both SAST and DAST?

Vulnerability consolidation and de-duplication Can
the system take manual review results and multiple
AST tool results, eliminate overlaps, and combine
similar results?

https://codedx.com/appsec-classroom/14-percent/
https://codedx.com/appsec-classroom/14-percent/
http://vimeo.com/32421617
http://vimeo.com/32421617

8CodeDx.com

Vulnerability status management Can it filter and
prioritize correlated vulnerabilities and effectively
track progress of their remediation?

Reporting capabilities Can it generate unified and
customizable reports of the identified vulnerabili-
ties to accommodate both development and man-
agement teams?

Collaborative capabilities Does the system help
developers, QA professionals, and security teams
easily communicate results and remediation rec-
ommendations effectively?

SDLC integration Can it be integrated into Soft-
ware Development Lifecycle (SDLC) environ-
ments? Does it seamlessly interface with continu-
ous integration systems, integrated development
environments, bug tracking and version control
systems?

Considering the security risks in releasing appli-
cations into production, it is disconcerting how
little focus application security receives. Data
breaches are not only enormously expensive to
remediate, but also produce a loss of consumer
confidentiality, confidence and trust. That is why
application security processes, especially test-
ing, should be an integral part of every applica-
tion’s software development lifecycle.

Just as importantly, SQA professionals need to
play an integral role in verifying that applica-
tions (and their associated data) are protected
and secure. Education of SQA teams is key in
developing or enhancing an organization’s AST
program. Understanding the security goals and
policy of an organization, defining clear security
requirements and test cases for applications and
equipping SQA teams with the right tools will
enable an organization to balance the respon-
sibility for application security between devel-
opment, SQA and security teams. Such active

involvement of SQA professionals will help to
streamline and strengthen the AST and manage-
ment process, while achieving reduction of an
organization’s application security risk.

About Code Dx
Code Dx, Inc. provides easy software vulnerabil-
ity management systems that help developers,
testers, and security analysts find and manage
vulnerabilities in software at any stage of devel-
opment. The Code Dx solutions combine multi-
ple static, dynamic, and interactive Application
Security Testing tools and manual reviews into an
aggregated, unified interface for simple triage
and remediation. The core technologies devel-
oped by Code Dx, Inc. were partially funded by
DHS Science & Technology to help secure the
nation’s software supply chain.

	_GoBack

