
Mission Assurance Proof-of-Concept:
Mapping Dependencies among Cyber Assets, Missions, and Users

Laurin Buchanan, Mark Larkin, Anita D’Amico

Secure Decisions Division

Applied Visions, Inc.

Northport, NY 11768 USA

{laurin.buchanan, mark.larkin, anita.damico}@securedecisions.com

Abstract—Decision makers must know if their cyber assets are

ready to execute critical missions and business processes. Net-

work operators need to know who relies on a failed network asset

(e.g. IP address, network service, application) and what critical

operations are impacted. This requires a mapping between net-

work assets and the critical operations that depend on them, cur-

rently a manual and tedious task. In addition, because of the dy-

namic nature of networks and missions, manual mappings of

network assets to operational missions rapidly become outdated.

This paper describes one approach to modeling the complex rela-

tionships between cyber assets and the missions and users that

depend on them, using an ontology developed in conjunction with

practitioners and cyber mission assurance researchers. We de-

scribe the “Camus” (cyber assets, missions and users) proof of

concept, which uses this ontology and automatically populates

that model from data already on the network. We discuss the

technical approach and provide examples of query results re-

turned by the model. We conclude by describing ongoing work to

enhance this proof of concept and its potential applicability to

support mission assurance and mission impact solutions.

Keywords-business continuity; computer security; cyber mission

assurance; data mining; network defense; network management;

ontology

I. INTRODUCTION

Understanding the operational environment is a critical el-
ement of mission assurance, but how does an organization
identify what cyber infrastructure is truly critical to their busi-
ness operation or mission? What assets should receive those
limited dollars for security investment? When faced with re-
sponding to a network intrusion alert or an event affecting net-
work service, an analyst must prioritize the importance of the
potential degradation, but who relies on the attacked/failed
cyber asset? What critical operation/mission is impacted by the
asset’s loss? What hidden or downstream assets or capabilities
depend on an unavailable or vulnerable network resource?

To answer these questions, organizations need to model
complex relationships between network assets and critical op-
erations, and to automatically populate and regularly refresh
that model to reflect actual usage of assets. Situation awareness
systems cannot determine the criticality of a cyber asset with-
out information about the mission and task dependencies of the
asset, other assets or network services dependent on that asset,
and the people and user dependencies of the cyber asset. Au-
tomated methods exist to simply map network assets, but they

do not automatically incorporate contextual information such
as what critical organizational missions an asset supports.
There are no systematic methods for mapping these relation-
ships; existing manual methods for mapping organizational
missions to cyber assets are tedious, labor-intensive, and there-
fore updated infrequently. Business continuity planning sys-
tems contain the intended use of cyber assets, but do not reflect
actual use of those assets to support organizational missions.

The goal of this project was to model the complex relation-
ships between cyber assets and the missions and users that de-
pend on them, and implement a system for automatically popu-
lating that model from commonly available network data
sources. The model forms the foundation of what we call Ca-
mus (for cyber assets, missions and users), with which users
can query their own populated model to determine:

 What users and operations are affected by the failure of
a specific asset?

 What network assets (e.g. devices, IP addresses, appli-
cations, and data) are needed to perform specific mis-
sion tasks or processes?

 Does an alternative capability or resource already exist
that can be substituted for the lost asset?

 What other assets depend on this specific asset?

Much of the grounding for Camus came from Salerno’s Air
Force Situation Awareness Model (AFSAM) [1],[2], which
describes the path data takes to become information that can be
consumed by analysts for improved situation management.
Camus aligns with the portion of AFSAM labeled “knowledge
of us,” which provides contextual information about the opera-
tional environment. The general AFSAM was refined [3] and
applied directly to the cyber domain, resulting in the Cyber
Situation Awareness (SA) Model. Within the Cyber SA Model,
the “knowledge of us” relevant to mission assurance is an accu-
rate understanding of how operations are impacted by degrada-
tions and compromises in cyber infrastructure.

II. TECHNICAL APPROACH

The technical approach for Camus centers on the following
three foundations:

 Automatically mine existing data to create contextual
information to better understand attacks;

This work was supported by the Office of the Secretary of Defense and
Air Force Research Laboratory through a Small Business Innovative Research

grant, under contract no. FA8750-08-C-0166.

 Structure contextual information to show relationships
between cyber assets, missions, users, and cyber capa-
bilities;

 Provide this contextual information to automated sys-
tems and human analysts.

For Camus, we defined an ontology based on the concepts
of User, Mission, Capability, and Asset. The ontology uses
Resources (entities) and Properties (relationships) to build a
model of the domain. The Resources define specific concepts
in the domain, while the Properties define the relationships
between the Resources.

At the center of Camus is the Application Core subsystem,
which serves as the central subsystem to the Camus system and
provides user and system interfaces, and communicates with
the Semantic Repository to store and retrieve data. The Seman-
tic Repository, which instantiates the ontology, stores the Ca-
mus data and provides the Semantic Rule Engine. The Data
Import Service (DIS) provides importation of enterprise data,
inference rule processing, and semantic repository population.

The Camus architecture was designed to demonstrate a
proof-of-concept of the solution, rather than an operational
prototype. To limit the cost and development time, we used
open source technologies for the semantic repository, and a
Wicket Web application front end. We developed a basic engi-
neering interface to verify what relationships Camus discov-
ered in the data. A future operational prototype would require
more costly technologies and software development to add
robustness, scalability and enhanced usability.

III. ONTOLOGY MODELING MISSION-USER-ASSET

RELATIONSHIPS

Camus relies on an ontology-based semantic approach to
data integration and fusion, similar to the concepts discussed in
Yoakum-Stover and Malyuta [4]. Our approach to developing
the Camus ontology was informed by two workshops we held
on mapping relationships between cyber assets, missions and
users [5]. Attendees included people with operational responsi-
bility to assure the availability of cyber assets for critical mis-
sions, researchers in areas related to the mapping of cyber as-
sets to missions, and developers of technology that can be used
in this mapping.

The workshops revealed the concept of “capability” in
mapping missions and tasks to cyber assets, which provides a
way to link these three groups of resources. Assets such as ap-
plications, data, and network services all provide capabilities
(communication, printing, internet services, etc.) to the users.
In turn, these capabilities support the completion of various
tasks for missions: personnel may use a communication capa-
bility, such as email, to perform tasks in support of a mission.
This idea of “capability” is also important to mission assur-
ance: if a specific device that provides a communication capa-
bility, such as an email server, is not available due to an attack,
another communication capability provided by a different cyber
asset may be substituted with minimal mission impact. Mission
planners and continuity planners often seek to optimize their
plans in terms of these general capabilities, rather than in terms
of individual, specific assets.

 Camus Ontology A.

For Camus, we defined an ontology based on the four main
types of resources identified during our workshops: User, Mis-
sion, Capability, and Asset. Each type represents a class of
Resources. The ontology uses Resources (entities) and Proper-
ties (relationships) to build a model of the domain. The Re-
sources define specific concepts (nouns) in the domain, while
the Properties define relationships between the Resources.

The Foundation Ontology is the base level ontology for
Camus and defines the core Resources and Properties to be
used either directly or derived when using the Camus frame-
work. Resources are associated with one of the four base types
described above. The Foundation Resource and Property types
are shown in Table I and Table II, respectively. An Extension
Ontology can extend the Foundation Ontology for a specific
implementation.

When mapping dependency relationships for mission as-
surance, not all relationships are equal. Some relationships are
casual, others are critical. The criticality of a dependency can
change over time, based on many factors. In the Foundation
Ontology Properties, we created three Properties to express the
criticality of a relationship: Uses, dependsOn and Requires, in
increasing level of dependency.

TABLE I. FOUNDATION ONTOLOGY: RESOURCES

Resource Type Description

OrganizationalUnit User A collection of User related resources.

An OrganizationalUnit can contain

other OrganizationalUnits

Person User A single human resource

Account User A single identity on a cyber resource

MissionElement Mission A single tasking element

CapabilityInstance Capability A single instance of the ability to

execute a specific action

CapabilityType Capability A classification of abilities to perform

an action

CyberAsset Asset A non-human resource accessible from

the network

Hardware Asset A physical computing device, element

of a computing device, or peripheral of

a computing device

Software Asset A program that performs a specific

function directly for a user or system

Data Asset Distinct pieces of digital information

that have been formatted a specific way

HostName Asset A label assigned to a computing device

on a network

IPAddress Asset An Internet Protocol address

ConnectionPoint Asset A pairing of a specific IP address and

Port for the purposes of communication

Port Asset A port number associated with a

communication endpoint used by the

Internet Protocol suite

Service Asset A software capability or process

typically associated with a Port

TABLE II. FOUNDATION ONTOLOGY: PROPERTIES

Property Relates

HasSubOrganizationalUnit OrganizationalUnit->OrganizationalUnit

isSubOrganizationalUnitOf OrganizationalUnit->OrganizationalUnit

hasMember OrganizationalUnit->Person

isMemberOf Person-> OrganizationalUnit

has Account Person->Account

accountBelongsTo Account->Person

hasSubTask MissionElement->MissionElement

isSubTaskOf MissionElement->MissionElement

precedesTask MissionElement->MissionElement

postcedesTask MissionElement->MissionElement

performsTask Person->MissionElement

isPerformedBy MissionElement->Person

taskUsesCapability MissionElement->CapabilityInstance

capabilityUsedByTask CapabilityInstance->MissionElement

accountUsesCapability Account-> CapabilityInstance

capabilityUsedByAccount CapabilityInstance->Account

usesCyberAsset CapabilityInstance->CyberAsset

cyberAssetUsedBy CyberAsset-> CapabilityInstance

hostsIPAddress Hardware->IPAddress

ipaddressHostedBy IPAddress->Hardware

hostsSoftware Hardware->Software

softwareHostedBy Software->Hardware

hostsData Hardware->Data

dataHostedBy Data->Hardware

managesData Software->Data

dataManagedBy Data->Software

mapsToIPAddress HostName->IPAddress

mapsToHostName IPAddress->HostName

usedByConnectionPoint IPAddress->ConnectionPoint

usesIPAddress ConnectionPoint->IPAddress

servesConnectionpoint Hardware->ConnectionPoint

servedByHardware ConnectionPoint->Hardware

servesPort ConnectionPoint->Port

servedByConnectionPoint Port->ConnectionPoint

mapsToService Port->Service

mapsToPort Service->Port

supportsCapabilityType Service->CapabilityType

supportedByService CapabilityType->Service

hasCapabilityType CapabilityInstance->CapabilityType

capabilityTypeOf CapabilityType-> CapabilityInstance

is a Various – shows is type of

Uses Various – shows minimal dependency

dependsOn Various – show moderate dependency

Requires Various – shows maximum dependency

IV. TECHNOLOGIES USED

Camus was designed using a Web-based architecture using
open source components. It was developed on a Windows plat-
form using the Eclipse version 3.4 (Ganymede) Integrated De-
velopment Environment (IDE) and Java Development Kit
(JDK) 1.6.0_18. The Camus application has been run on the
Windows 7, Windows Vista, and Ubuntu version 9.10 plat-
forms. Camus consists of three main subsystems: Semantic
Repository, Application Core, and Data Import Service. Each

of these subsystems can be hosted on separate platforms; they
communicate using HTTP.

 Semantic Repository A.

The semantic repository is implemented using Sesame and
hosted on an Apache Tomcat servlet container. Sesame is a
framework for storage, inferencing, and querying Resource
Description Framework (RDF) data. It supports RDF, RDF
Schema (RDFS), and OWL Web Ontology Language, which
are specifications developed by the World Wide Web Consor-
tium (W3C) that define the central concepts used for semantic
web applications. OWLIM is an enhancement to Sesame spe-
cifically for supporting RDFS and OWL and improving query
and reasoning performance. We used the free SwiftOWLIM
version (now known as OWLIM-Lite from Onotext) in the
final Camus proof-of-concept.

1) Semantic Web
The basic data construct in the semantic model is the state-

ment. A statement defines a relationship between two re-
sources. A statement is made up of three elements:

Subject-Predicate-Object

The Subject and Object elements are both Resources (enti-
ties), and the Predicate defines a relationship between these
Resources. A statement is also called a triple indicating the
three elements that make up the statement. A collection of
statements represents the data model. All three elements are
represented as URI’s (Universal Resource Identifier).

Statements are added to a repository either by assertion or
inferencing. Asserted statements are those statements added to
a repository by a user or external application. Inferred state-
ments are those generated by an inferencing engine or reasoner
and added to a repository. A Reasoner (or Inferencing Engine)
examines all the statements in the repository, and using the
rules defined by the various specification levels, creates new
statements which are added to the repository. The act of deriv-
ing new statements is called inferring and the resulting state-
ments are inferred statements. These are also used by the rea-
soner to infer even more statements.

 Application Core B.

The Camus Application Core subsystem provides the cen-

tral control for the Camus application. The Application Core

subsystem is hosted by Apache Tomcat, an open source servlet

container. There are three main components of the application

core: Camus App core, the RESTful API, and a Wicket Web

application front end.

1) Camus App Core

The App Core provides an API to interact with the Camus
repository. All data items in the repository are stored as RDF
statements (Subject-Predicate-Object) while methods support
ensuring, getting, and removing these statements. Ensuring a
statement will add the statement to the repository if it does not
already exist, and update it otherwise. The CamusRepository
class provides methods to execute queries against the reposito-
ry. Both SPARQL and SeRQL query syntaxes are supported.

Attributes provide the ability to define additional data about
Resources or Properties. Attributes for Resource and Properties
are implemented via reification, which provides the ability to
make statements about other statements. Typically, a statement
is of the format Subject-Predicate-Object, where the Subjects
and Objects are simple Resources; however, with reification
the Subject and Object may be other statements. This provides
the ability to define attributes for Resources and Properties,
such as the CreatedDateTime attribute which indicates when a
Resource was first discovered by the data import process and
inserted into the ontology. Reification is very resource inten-
sive to implement, because it increases the overall statement
count in the repository: the first attribute of a Resource or
Property has an overhead of five additional statements. Each
additional Attribute for that particular Resource or Property is
one additional statement. Additional attributes that would indi-
cate confidence values for relationships mapped by Camus
were not implemented due to this resource consumption.

2) RESTful API

We implemented a RESTful interface to provide the ability
to interact with the Camus repository. A RESTful interface
uses the Representational State Transfer (REST) model for
communications. It is used by the Data Import Service to popu-
late the Camus repository with Resources, Properties, and At-
tributes. The RESTful interface is implemented using the open
source RESTlet Framework.

 Data Import Service C.

The Data Import Service (DIS) provides importation of en-
terprise data, inference rule processing, and semantic reposito-
ry population. These capabilities were implemented in a sepa-
rate process in order to maximize scalability and provide flex-
ible deployment scenarios. The DIS is implemented in Java
using Java SE 6, enabling access to the widest available set of
open source and commercial software products for integration,
and the largest possible set of deployment platforms. By lever-
aging Java-compatible scripting engines for execution of cus-
tom logic, both importation logic and the inference rules used
by the DIS can be modified without requiring a Java develop-
ment environment or a formal software development cycle.

1) High-level Workflows
The DIS is deployed as a Java application, with an accom-

panying data processing pipeline configuration file, data im-
port scripts, and rule statements. The DIS process can be visu-
alized as a recurring pipeline with concurrent actions, de-
signed to process one dataset to completion, populate the se-
mantic repository with the results, process the next dataset,
and so on. The pipeline is an XML file that describes a tree of
work times and the dependencies between them, and repre-
sents a tree of dependent work items. Each work item de-
scribes the sources of data it consumes, the scripts that will be
applied to these sources, and the rule set that will be applied to
the facts generated by the import scripts. In addition, each
work item describes which other work items’ outputs it needs
to function, thus defining a dependency tree. Each work item
performs a single analysis data import and/or inference rule
execution (e.g. correlate DHCP log with NetFlow log).

2) Types of Data Processed
We identified two broad categories of enterprise data: Ref-

erence Data and Event Data. We categorize anything that is
“asserted” (a statement of fact) as “Reference Data.” These
data usually describe enterprise resources such networks, serv-
ers, domain and host name information, as well as organiza-
tional information like personnel, titles, teams, groups and
departments, as detailed in org charts or directory listings.
Reference Data are used by the DIS to build a list of entities
(with related descriptive information) that is then published to
the semantic repository with no inference rules applied.

To infer the relationships between entities, the DIS con-
sumes activity or usage data from enterprise systems. We cat-
egorize this kind of information as “Event Data.” Examples of
this kind of data are NetFlow, server and application logs, and
DHCP Logs. To process Event Data, it is first imported and
normalized, then an appropriate set of inference rules are ap-
plied to generate relationship data between observed entities.

3) Import Engine
The first step in a data import pipeline is importation of

raw data by running import scripts (written in JavaScript) to
generate a set of normalized “facts”, the in-memory Java ob-
jects that the DIS conveys through the pipeline. The DIS lev-
erages the JavaScript engine that ships as part of Java 6 (via
JSR 223). This script engine is derived from the “Rhino En-
gine.” Once fact objects have been created, the DIS submits
these to the rule engine and invokes the inference rules which
produce a final set of objects that represent Resources and
Properties compatible with the Camus semantic repository.
The DIS uses the JBoss Rules Engine (codenamed “Drools”),
an open source product licensed under the Apache License
v2.0. JBoss Rules is a Forward-Chaining Rule Engine which
starts with a set of facts that are asserted into the engine’s
working memory, and iteratively applies if-then statements
until all the facts have been processed. If-then statements may
create additional facts that are in turn asserted back into the
rule engine’s working memory, possibly causing more condi-
tions to trigger. This process can provide a very sophisticated
and complex inference processing system. The performance of
JBoss Rules was less than ideal, however; other rules engines
should be evaluated to see if rule inference performance can
be improved.

4) Scalability
Camus was designed for deployment to an enterprise, alt-

hough no quantitative measures of scalability are currently
available. The data import process, from raw input to semantic
repository, is “forward-only”, meaning the DIS never reads
from the Semantic Repository. Only inserts and updates are
performed on the repository, which reduces the complexity of
the overall system and improves the ability to distribute data
importation workload across many computing resources with-
out the semantic repository itself becoming a bottleneck. By
breaking down importation and inference workloads into a
number of independent processes, rapid turnaround of enter-
prise data can be achieved. Data processing can be distributed
across different servers, reducing the impact on network per-
formance. This also alleviates the need to move sensitive in-
formation across large parts of the enterprise network by keep-
ing raw data local to its source; only the output data from a

data processing pipeline must be sent to the Semantic Reposi-
tory. Multiple DIS instances installed in an enterprise will
contribute results to a single Semantic Repository, providing a
single view of the enterprise.

The DIS also implements a lightweight historical cache,
which maintains historical aggregations of activity and greatly
improves the performance of rule inferencing by allowing the
rule engine to work across event aggregations, rather than each
individual event; e.g. the count of packets that are sent from a
workstation to a server is stored, rather than the individual
NetFlow records. This also greatly reduces the data storage
and processing requirements. Aggregation, however, means
that changes to rules that affect what information is needed, or
how aggregations are calculated, will require time to build up
sufficient aggregate periods for the new rules to detect mean-
ingful relationships, and that Camus cannot be used for histor-
ical behavioral analysis.

 Synthetic Data Set D.

We were unable to obtain real-world sample data that in-
cluded network activity in support of an identified mission;
most available security data sets contained attack data and ran-
dom activity data, but lacked any identified missions or mission
activity. In an early version of the Camus proof-of-concept [6]
we used such a security data set, but without known ground
truth of mission-related activity we were unable to verify the
validity of relationships that Camus discovered and inferred.

To overcome this challenge in later versions of the proof-
of-concept, we modeled business operations typical of a com-
mercial organization and asserted our own mission structure,
using typical back-office departments such as Finance, IT, etc.
as generic missions, and using functional teams such as Ac-
counts Receivable, Accounts Payable, Benefits, Payroll, etc. as
representations of tasks. Leveraging team members’ prior cor-
porate IT and business continuity planning experiences, we
then designed a network environment that would support the
missions. We developed a synthetic test data set, proscribing
various users, systems, and realistic log data and traffic flows
by type, quantity, and periodicity; some specified activity sup-
ported various missions, other activity was more generic. The
resulting synthetic network data (flow, logs, etc.) was used to
test and demonstrate Camus.

To reflect this organization, we extended the User and Mis-
sion resource types in the Foundation Ontology to include re-
sources such as Company, Department, Group and Role, result-
ing in the combined Foundation and Extended Ontology seen
in Fig. 3. In this figure, the User type resources are shown in
the upper left and consist of Organizational Unit, Person, and
Account (Foundation elements) and the extended elements
Company, Department, Group, and Role. The Mission re-
sources in the upper right of the diagram consist of Mission
Element (Foundation element) and extended elements Mission,
Task and Subtask. Capabilities are represented by the Capabil-
ity Instance and Capability Type elements. Lastly, the three
main types of Asset resources are shown in the bottom half of
the diagram: Hardware, Software and Data. Cyber Assets com-
bine to provide Capabilities, which are used by Users to per-
form Missions.

V. MAPPING RESULTS

Readers familiar with entity relationship diagrams will
grasp the ontology and relationships maps produced by Camus.
In these graphs, nodes are the Resources while edges represent
the Properties, as seen in the mapping of relationships between
user (Case_Donaldson) and mission (Human_Resources) in
Fig. 1. The user shown in the Person node has relationships to
the Payroll Subtask and its parent Task, Benefits. The lines
from Person to Task and Person to SubTask indicate that evi-
dence for each relationship was discovered by Camus. Refer-
ence data provided to Camus asserted that the Benefits task is
part of the Human Resources mission; this enabled Camus to
infer the mapping of Person to Mission.

Fig. 2 shows the relationship of the capabilities Database,
Internet_Services, and Cryptography to a Hardware resource,
i.e. an Asset, with the designation 192.168.10.20. The data pro-
vided to Camus did not indicate whether a computing device
was a workstation or server, so we used the reasoner to infer
“what is a server?” and “what is a workstation?” based on
whether the individual device had connections below port
1024, a behavior commonly associated with servers. In addi-
tion, MAC addresses of workstations do not change as often as
IP addresses assigned via DHCP, so this enables Camus to
more accurately map users to their workstation assets. Camus
indicates a server as a Hardware resource with its IP address as
its node name; workstations are identified by Media Access
Control (MAC) addresses as the node name. In Fig. 2, the
Hardware resource node name is an IP address, indicating Ca-
mus inferred that this asset is a server.

Camus answers mission assurance questions, from either
top-down or bottom-up perspectives. The top-down approach is
often related to mission readiness, e.g., when a senior officer in

Figure 1. Camus mapping users to mission

Figure 2. Camus mapping capabilities to assets

the military or industry asks, “What cyber assets do I need to
execute my mission?” The question focuses at the top of the
organization, at the mission level. Bottom-up questions, such
as, “What missions or users are impacted by the loss of this
device?” may be asked during planning stages prior to mission
execution, or by incident responders seeking to determine how
to ensure mission success after an incident occurs

Fig. 4 shows Camus answering the mission readiness ques-
tion, “What is needed for the Invoicing SubTask?” by map-
ping relationships from the Invoicing SubTask to connection
points (IP address and port number). Personnel associated with
Invoicing are linked to their user accounts and workstations
(shown by MAC addresses), then a dense matrix of connec-
tions to other assets from those accounts and workstations.
The graph also reveals hidden dependencies from the Hard-
ware asset 192.168.10.20 to the connection point of
192.168.10.21:3369.

Camus answers the question, “What missions does the IP
address 102.168.10.30 support?” in Fig 5. This graph shows
the selected IP address at the center, with initial mappings to
Capability Instances, which are then mapped to SubTasks (In-
voicing), then Tasks (Accounts_Receivable, Credit, Payroll,
Accounts_Payable, Recruiting, Human_Resources, Benefits),
and Missions (Human Resources and Finance).

VI. CONCLUSIONS

Technologies for mapping cyber assets to missions and us-
ers provide an accurate operational picture of an organization:
who uses what asset, and what they are using it for. Technolo-
gies like Camus are one component in a situation awareness
solution that supports mission assurance. The dependency
mappings provided by Camus can provide a scientific basis for
mission-based risk assessments, revealing which assets actually
support critical or multiple missions, and are thereby prime
targets for a limited cyber security budget. Camus could like-
wise enable mission-based vulnerability analysis and mitiga-
tion, or assessment of actual impacts of cyber attacks on mis-
sions [7]. For these approaches to be effectively realized, they
all require mapping missions to cyber assets based on actual,
not planned, usage. Camus could support business continuity
planners and systems, as well as capacity planning systems,
providing automatic updates of system dependency mappings
and usage information based on recent, actual data.

There are several current operational applications for Ca-
mus. If integrated with security event and incident management
systems such as ArcSight, or intrusion detection or prevention
devices, Camus could provide context to help prioritize tickets
based on affected missions, and help incident responders de-
termine who to notify. Camus could be both a consumer of, and
provider to, configuration management systems from vendors
such as IBM (Tivoli), Novell (ZenWorks) and

Figure 3. Foundation and Extension ontology used in the Camus prototype

Figure 4. Camus mapping relationships between tasks and assets

Figure 5. Camus mapping cyber asset to missions

BMC (Atrium), taking in asset inventory information and
providing context for outage notifications and downstream
infrastructure impacts. These technologies could benefit from
the automated dependency mappings between cyber assets and
missions that the Camus proof-of-concept has demonstrated.

REFERENCES

[1] J. Salerno, M. Hinman, and D. Boulware, “A situation awareness model
applied to multiple domains,” Proc. of Multisensor, Multisource
Information Fusion: Architectures, Algorithms, and Applications 2005,
vol. 5813, B. Dasarathy, Eds., pp.65-444.

[2] J. Salerno, “Measuring Situation Assessment Performance through the
Activities of Interest Score,” Proc. of 11th International Conf. on Infor-
mation Fusion, IEEE Press, 2008.

[3] G. Tadda, J. Salerno, D. Boulware, M. Hinman, and S. Gorton, “Reali-
zing Situation Awareness within a Cyber Environment”, Multisensor,

Multisource Information Fusion: Architectures, Algorithms, and
Applications 2006, vol. 6242, B. Dasarathy, Eds., Apr 2006.

[4] S. Yoakum-Stover and T. Malyuta, Unified Data Integration for Situa-
tion Management. Situation Management (SIMA), Proc.of the Military
Communications Conf. (MILCOM), IEEE Press, 2008.

[5] A. D'Amico, L. Buchanan, J. Goodall, and P. Walczak, “Mission impact
of cyber events: scenarios and ontology to express the relationships
between cyber assets, missions and users,” 1 December 2009,
handle.dtic.mil/100.2/ADA517410.

[6] J. Goodall, A. D'Amico, and J. Kopylec, “Camus: automatically map-
ping cyber assets to missions and users.” Proc. of the Military Commu-
nications Conf. (MILCOM), IEEE Press, 2009.

[7] M. R. Grimaila, L. W. Fortson, and J. L. Sutton, “Design Considerations
for a Cyber Incident Mission Impact Assessment (CIMIA) Process,”
Proceedings of the 2009 International Conf. on Security and Man-
agement (SAM09), Las Vegas, Nevada, July 13-16, 2009.

