
1

Security breaches are on the rise. Confidential data is now stored and
software applications are run on company computer systems, in the
cloud and on mobile devices. With ever-increasing points of entry, it is not
a surprise that breaches are on the rise. No organization, large or small,
is immune to security risks. Therefore, it is critical that every business
takes the necessary precautions to ensure their data and enterprise are
protected from the numerous potential vulnerabilities that surround us
every day. This includes protection using software applications.
Industries, such as healthcare, financial services and retail have been particularly vulnerable.
Incidents at Home Depot, Sony, Target, and the federal government, to name a few, have
made news headlines in recent years. These data breaches have impacted millions of
consumers, cost organizations hundreds of billions of dollars, and elevated the concerns of
information security professionals.

According to Build Security In (BSI), 90% of reported security problems result from
weaknesses in applications, such as web and mobile apps.1 Those organizations that believe
that just having user names and passwords for authentication and encrypting data as it
moves throughout cyber space are sufficient, may be putting their data at serious risk.

To defend from malicious attacks, large corporations often have bug bounties where they
pay “white hat” hackers to find vulnerabilities in their applications before attackers do.
Google is said to pay these hackers up to $20,000 per vulnerability, and Microsoft has been
said to pay as much as $150,000. Even United Airlines has a bug bounty program, recently
giving one individual 1,000,000 air miles for finding a vulnerability in their software. There is
an entire community of people making a living on finding bugs to protect organizations from
debilitating data breaches, and another large community of cyber criminals out to do harm.

What is Application Security Testing?
Most cyber security incidents can be traced back to a software vulnerability that was
inadvertently put there when the code was developed.

Vulnerabilities in applications can present themselves during the design and development
of the application, as well as during upgrades and maintenance. With so many opportunities
for threats, organizations need to take the proper steps to test their applications for any
security holes throughout the entire software development lifecycle (SDLC).

Despite the high risk of attacks, it is not uncommon for the software team to wait until the
development process is complete before testing for weaknesses, which are defined as
potential vulnerabilities that may or may not be exploitable. This goes against industry best
practices, which have shown that it actually costs a lot less to “build security in” during the
software development process than to fix the vulnerabilities later in the lifecycle.

Application Security Testing 101

Finding Software Vulnerabilities
Before Hackers Do

1

2

Application Security Testing (AST) tools and methodologies
are becoming more widely adopted by software developers
and security analysts to identify holes in software
applications; although it still needs to be moved higher on
the list of security strategies for organizations to implement.
And this does not just mean software development
companies, it also means organizations developing their
own in-house applications, or even those buying software
solutions from third-party vendors. It is important, whether
an organization builds or buys a software package, to ensure
it does not contain any weaknesses that will make the data
housed within the system vulnerable to exploits.

Quality vs. Security
AST is often confused with quality testing. Some think that
if they have quality code then the application is also secure.
That’s not the case. Quality testing is focused on whether
the application is doing what it is supposed to do. Quality
issues can include: confusing code that is hard to follow;
performance issues, such as the code working slower than
it should; concurrency issues; memory leaks; null pointers;
infinite loops; and redundant or dead code. On the other
hand, security testing is focused only on ensuring the
application is protected from intruders. Security issues could
include SQL injection, Cross-Site Scripting (XSS), Cross-Site
Request Forgery (CSRF), buffer overflows, using hard-coded
passwords, weak encryption, sensitive data, etc.

Quality and security issues are two separate but related
concerns. One can easily make an argument that code that
has quality concerns is more likely to have security concerns
as well, and in fact a number of recent studies looking at
vulnerability incidence in faulty code confirm that there is
a strong correlation between the two. A recent study by
the Software Engineering Institute, for instance, found that

development groups with a strong focus on quality tended to
have fewer vulnerabilities in their source code.2 Therefore, it
is important to keep in mind that quality and security are not
separate worlds, but rather two sides of the same coin.

Types of AST Methodologies/Tools
There are a variety of different application security testing
methods that should be considered by application
developers and security professionals. These AST techniques
include manual code review, Static Application Security
Testing (SAST), and Dynamic Application Security Testing
(DAST).

Manual Testing
Code reviews are a venerated tradition in software
development. Typically, one or more reviewers will manually
scan the source under review ensuring that the system
requirements are being met, the design is consistent, and
quality standards are maintained. Although code reviews
have traditionally been used primarily with a quality focus,
they are a key component of the security testing toolbox.
Reviewers scan the source code for vulnerabilities that can be
exploited, and bring them to the reviewee’s attention. The
review process is largely the same regardless of whether one
is doing a quality or a security review. In fact, reviewing for
both should be done as part of the same assessment. What
changes is the mindset one uses to approach the review
process, and the nature of the questions one asks during the
assessment. Understanding the threat model for the code
being reviewed, for instance, is an important part of the
process, in order to be on the lookout for potential attack
vectors that might be exploited.

For certain types of applications, such as the mission-critical
software that powers a key infrastructure or the software used
in a NASA space program, reviewing each line of code is not
only a requirement but is also a more cost-effective approach
than automated solutions. However, for most software,
carefully reviewing every single source line is not viable.
Therefore, understanding when and how to do so is an
important skill. Code reviews typically yield the best bang for
the buck when keeping an eagle eye on critical subsystems,
and evaluating the security posture of new subsystems that
are still evolving. Code reviews also help new engineers
further develop a security mindset.

For additional reading on the topic, a variety of resources
exist for understanding how code reviews fit into application
security, including the well-documented OWASP Code
Review Project from the Open Source Web Application
Security Project (OWASP), an organization dedicated to
fostering a global culture of secure application development.3

Quality and security are not separate worlds,
but rather two sides of the same coin.

2

3

SAST
Also known as white box testing, SAST is a popular method
that employs tools to automatically analyze the application’s
source code, byte code, or binary code line-by-line to expose
weaknesses during the programming or testing phases of the
SDLC, before the software is deployed.

SAST tools are used early in, and throughout, the SDLC to
test the application from the inside out, and do not require
a running system to perform those evaluations. By detecting
flaws in the code early in the process, weaknesses can be
fixed before hackers detect them, and before they become
true vulnerabilities for an organization.

Essentially, with SAST tools the reviewer or tester inputs the
source code and/or binary files that they want to analyze,
and the tool scans those files and presents a list of potential
vulnerabilities. The list produced can be extensive: potentially
tens of thousands of weaknesses can be identified during
a scan. Managing such a large number of findings can be
overwhelming, so it is important to use the right tools and
approaches to make the process more manageable. This
includes:

• Distilling the list of reported weaknesses down to a
manageable set. This is typically achieved by triaging the
potential vulnerabilities to determine which ones are high
impact issues that need to be dealt with immediately.

• Using existing top-weakness lists and industry standards to
focus initial efforts on a directed subset of the issues. The
OWASP Top 10 4 and the SANS Institute’s Top 25 Most
Dangerous Software Errors, for example, are good starting
points to look at issues that are commonly seen in code.
Alternatively, looking at the cross-section of weaknesses
affecting compliance, such as with PCI or HIPAA, offers a
focused approach to prioritizing the identified issues.

• Identifying false positives, and tagging the specific lines of
code associated with the false positives so that they don’t
re-appear in future static code scans.

• Assigning weaknesses to developers for remediation.

• Collaborating among developers, and between developers
and security analysts.

For all of the above, the use of a software vulnerability
management system can significantly help alleviate the
weakness processing and remediation challenge. The triage
process for instance, although largely a manual one, can
benefit significantly by using a vulnerability management
system. It can help streamline the workflow, making the
process quicker and more efficient. Similarly, mapping
the results back to top-lists or compliance standards can

be a largely automated process with the use of the right
vulnerability management system.

A subset of SAST tools specializes in dependency checking
to identify vulnerabilities in third-party libraries used by the
system being scanned. A significant component of software
projects developed today are third-party libraries, often
open source, woven together to form the final application.
Understanding the security posture of this significant portion
of software projects is an important activity to perform during
security assessments. Dependency checking tools will scan
the software projects, identify those third-party libraries, and
list the known vulnerabilities for those libraries.

DAST
DAST tools are considered black box testing tools, analyzing
applications “dynamically,” in real-time, while the application
is running. DAST is also known as penetration testing, or fuzz
testing.

The key difference between SAST and DAST tools is that
DAST is done from the outside looking in, simulating attacks
against the application and analyzing how the application
behaves in response to those attacks, in order to identify
vulnerabilities. Testers usually have no access to or knowledge
of the inner workings of the application prior to testing, as
they attempt to exploit any potential vulnerabilities, including
those outside the code and in third-party interfaces.

The DAST process starts with setting up a staging
environment since such testing, at least initially, should not
be conducted in a production environment. The DAST tool
is typically manually tuned to identify the attack surface (all
potential vectors on which an attack can occur). The tools
perform active probing for vulnerabilities – conducting one
test case after another, logging issues as they are found. Like
SAST tools, the vulnerabilities are identified and reported,
and remediation can begin.

Source code, byte code, and binaries are not required with
DAST, and it is easier to use and less expensive than SAST
tools. Because the testing is conducted at runtime and
vulnerabilities can be confirmed more easily, DAST typically
produces more true positives than with SAST tools. On the
other hand, DAST tools are usually unable to isolate the
exact site of a weakness in the code, whereas SAST tools
will often describe in detail the code paths leading to their
identified weaknesses.

By providing the outside-in perspective, DAST tools can
provide valuable insight and are ideal to be used closer to
the end of the release cycle rather than at the start. In cases
when source code is not available, DAST may even be the
only viable security testing option.

3

4

Limited Code Coverage
As mentioned, AST tools can find thousands of weaknesses
in an application. The testing results can leave a developer
feeling devastated that so many weaknesses were found, or
possibly gratified that the tool caught so many weaknesses
before the application was released to the user community.

No matter how they feel about the results, software
developers must understand that by running only one
application security testing tool, even the best on the market,
they are missing most of the weaknesses in their code.
One tool only covers the tip of the iceberg. There could be
thousands and thousands of flaws that the analysis tool is
not seeing, some of which could result in serious weaknesses
being missed that could leave the system vulnerable to
exploits.

According to a study done by the National Security Agency’s
(NSA) Center for Assured Software (CAS), the average tool
covers just eight of the 13 weakness classes (e.g. buffer
handling, file handling, initialization and shutdown, and
number handling), which is 61.5%. This study also found
that the average tool covers only 22% of the flaws in each
of the 13 weakness classes.5 If the percentage of the flaws is
multiplied by the percentage of weakness classes covered,
the total coverage of the average tool is only 14%. This is eye
opening for many software developers, who have assumed
that their vulnerability scanners cover a much larger area.
Missing more than 80% of the weaknesses in the application
code should not be acceptable for any organization.

Managing Multiple Tools
In addition to discovering that each of the analysis tools
failed to report a significant portion of the flaws studied, the
NSA CAS found that the tools perform differently on different
languages and on different weakness classes. Moreover,

as Paul E. Black of the National Institute of Standards and
Technology (NIST) reports in a presentation on “Evaluating
Static Analysis Tools,” different static analyzers are used for
different purposes. He provides examples such as checking
for intellectual property violation, helping developers decide
if anything needs to be fixed, and/or helping auditors or
reviewers decide if it is good enough for use. However, both
studies found that complementary tools could be combined
to achieve better results. 6

Using two or more tools will provide greater vulnerability
coverage. The fact that each tool specializes in different
weakness classes and different languages eliminates much
of the overlap among the tools. In addition, when there is
an overlap, the developer will be more confident that the
identified flaws are not false positives, and can focus on
ensuring that those weaknesses are fixed.

Leveraging multiple tools does have its challenges – namely
in the additional time required to set up and run the tools
and compare the results, as well as in the cost required to
add more tools. Furthermore, comparing the results can be
painstaking, as each tool produces a set of weaknesses with
its own naming conventions and severity ratings.

This is where software vulnerability management systems
come into play. These solutions show the overlap in the
various AST tools. Whether commercial scanners, open
source vulnerability tools, or a combination of both are
being used, software vulnerability management systems will
show the results of each and identify the vulnerabilities that
were found by each tool. They correlate and normalize the
results from commercial and open source tools to deliver a
consolidated set of results that provides greater coverage of

BEST PRACTICE: Use multiple static analysis tools and combine results

A
B

D
C

NON-OVERLAP: Hits reported by one tool and no others84%
2 TOOLS

3 TOOLS

4 TOOLS

ALL 5 TOOLS

16% OVERLAP: Hits reported
by more than one tool

Different tools identify different problems.
A single tool, on average, detects 14% of weaknesses*

*Chris Britton and Chuck Willis, “Sticking to the Facts:
Scientific Study of Static Analysis Tools.”, Sept., 2011: http://vimeo.com/32421617

Paul E. Black, “Evaluating Static Analysis Tools”, 8 July 2009:
http://samate.nist.gov/docs/eval_SA_tools_MIT_LL_July_2009.ppt

Output of Code Dx Software Vulnerability Management System
that consolidates the results of nine source code analysis tools,
showing minimal overlap in their 6,000+ findings.

4

5

potential vulnerabilities in the source code, and a better
assessment of an organization’s overall enterprise risk. In
addition, software vulnerability management systems provide
easy-to-use mechanisms for prioritizing weaknesses, tagging
false positives, assigning them to developers, tracking the
progress of remediation, and preparing reports of findings.

Software vulnerability management systems become
increasingly important as users adopt the growing trend to
combine the results of SAST and DAST using a technique
called Hybrid Application Security Testing (HAST) to perform
a behavioral assessment of the application. By leveraging
both methodologies, HAST promises a more accurate and
reliable approach for testing source code and detecting
vulnerabilities.

Key Players in the AST Market
There are many AST tools on the market today that help
organizations identify flaws in their software or applications
that can be exploited in a number of different ways. The
following is a list of some of the more well-known SAST and
DAST tools on the market. They include both commercial
products as well as open source solutions.

SAST Tools
Open Source/Free Tools:

•		Brakeman is an open source vulnerability scanner
specifically designed for Ruby on Rails applications. It
statically analyzes Rails application code to find security
issues at any stage of development.

•		Dependency	Check is an OWASP utility that identifies
project dependencies and checks if there are any known,
publicly disclosed vulnerabilities. Currently Java, .NET and
Python dependencies are supported.

•		FindBugs is a program that uses static analysis to look for
bugs in Java code. It is free software, distributed under
the terms of the Lesser GNU Public License, and has been
downloaded more than a million times.

•		Retire.js is an open source command line scanner that
helps identify JavaScript libraries with known vulnerabilities
in applications.

• FxCop is a Microsoft application that analyzes managed
code assemblies (code that targets the .NET Framework
common language runtime, or CLR) and reports
information about the assemblies, such as possible design,
localization, performance, and security improvements.

Commercial Products:
•		Checkmarx	is a Source Code Analysis (SCA) solution

designed for identifying, tracking and fixing technical and
logical security flaws from the root: the source code.

•		GrammaTech’s	CodeSonar	analyzes source code and
binaries, identifying programming bugs that can result in
system crashes, memory corruption, leaks, data races, and
security vulnerabilities.

•		HP	Fortify	offers comprehensive application security
solutions that cover every aspect of application security
testing, software security management, and application
self-protection to help you secure the software that runs
your business.

•		IBM	AppScan	Source helps organizations lower costs
and reduce risk exposure by identifying web-based and
mobile application source code vulnerabilities early in the
software development lifecycle, so they can be fixed before
deployment.

•		Parasoft	enables development teams to build security into
their application by facilitating code-hardening practices
based on accepted industry standards, such as OWASP
Top 10, CWE/SANS Top 25, and PCI DSS.

•		Veracode	is a patented binary SAST technology that
analyzes all code – including third-party components and
libraries – without requiring access to source code.

•		Sonatype	Nexus	Auditor continuously monitors for
security and legal risk in applications. It provides greater
visibility into exactly which components are used, including
dependencies, known security vulnerabilities, license
obligations, and more.

5

6

DAST Tools
Open Source/Free Tools:

•		Arachni	is an open source, full-feature, modular, high-
performance Ruby framework aimed towards helping
penetration testers and administrators evaluate the security
of web applications.

•		OWASP	ZAP	(Zed	Attack	Proxy)	is an easy-to-use
integrated penetration testing tool for finding
vulnerabilities in web applications. It is designed to be
used by people with a wide range of security experience,
and as such is ideal for developers and functional testers
who are new to penetration testing, as well as being a
useful addition to an experienced pen-tester’s toolbox.

•		W3af is a Web Application Attack and Audit Framework.
The project’s goal is to create a framework to help secure
web applications by finding and exploiting all web
application vulnerabilities. The framework is developed
using Python to be easy to use and extend, and licensed
under GPLv2.0.

•		Skipfish	is Google’s active web application security
reconnaissance tool. It prepares an interactive sitemap
for the targeted site by carrying out a recursive crawl
and dictionary-based probes. The resulting map is then
annotated with the output from a number of active (but
hopefully non-disruptive) security checks. The final report
generated by the tool is meant to serve as a foundation for
professional web application security assessments.

Commercial Products:
•		Acunetix	Web	Vulnerability	Scanner	(WVS)	is a tool

that crawls a website, automatically analyzes the web
applications, and finds perilous SQL injection, Cross-Site
Scripting, and other vulnerabilities. Concise reports identify
where web applications need to be fixed, thus enabling
you to protect your business from impending hacker
attacks.

•		Burp	Suite is an integrated platform for performing
security testing of web applications. Its various tools work
seamlessly together to support the entire testing process,
from initial mapping and analysis of an application’s attack
surface to finding and exploiting security vulnerabilities.

•		HP	WebInspect	is an automated dynamic testing tool that
mimics real-world hacking techniques and attacks, and
provides comprehensive dynamic analysis of complex web
applications and services.

•		IBM	AppScan enhances web application security and
mobile application security, improves application security
program management, and strengthens regulatory
compliance. By scanning web and mobile applications
prior to deployment, AppScan enables users to identify
security vulnerabilities and generate reports and fix
recommendations.

•		Netsparker is a web application security scanner
with support for both detection and exploitation of
vulnerabilities. It aims to be free of false positives by
only reporting confirmed vulnerabilities after successfully
exploiting or otherwise testing them.

•		Veracode’s DAST technology identifies architectural
weaknesses and vulnerabilities in running web applications.

Educating Stakeholders
The development team and security professionals must have
buy-in from senior management to invest in AST tools up
front. If they do not invest early, they run the risk of paying
significantly later when a security problem is discovered after
a product is released.

There are a number of resources available to help convince
senior management that AST is essential for protecting
valuable information assets from malicious attacks that can
be detrimental to an organization’s bottom line.

•		Glossary	of	AST	Terminology is an online resource of
application security testing terminology developed by
Code Dx, Inc. to help educate those just starting out in
the AST market, or to refresh those who have been in the
industry for years.7

•		OWASP is a not-for-profit organization with more than
43,000 members worldwide, focused on improving the
security of software. Its mission is to make software security
visible, so that individuals and organizations worldwide can
make informed decisions about true software security risks.

 OWASP is perhaps best known for its Top 10 list of the
most common web vulnerabilities. Compiled by security
experts from around the world and first published in 2004,
the list is updated by the OWASP Foundation every three
years. The 2013 list includes the following vulnerabilities,
starting with the most prevalent: SQL Injection, Broken
Authentication & Session Management, XSS, Insecure
Direct Object references, Security Misconfiguration,
Sensitive Data Exposure, Missing Data Exposure, CSRF,
Using Components with Known Vulnerabilities, and
Invalidated Redirects & Forwards.

6

•		ISACA (Information Systems Audit and Control Association)
is an independent, nonprofit, global association that
engages in the development, adoption and use of globally
accepted, industry-leading knowledge and practices
for information systems. It provides practical guidance,
benchmarks, and other effective tools for all enterprises
that use information systems. Through its comprehensive
guidance and services, ISACA defines the roles of
information systems governance, security, audit, and
assurance professionals worldwide. The COBIT framework
and the CISA, CISM, CGEIT and CRISC certifications are
ISACA brands, respected and used by these professionals
for the benefit of their enterprises.8

•		BSI	Software	Assurance	Initiative	is a project of the
Strategic Initiatives Branch of the National Cyber Security
Division (NCSD) of the Department of Homeland Security
(DHS). Build Security In is a collaborative effort that
provides practices, tools, guidelines, rules, principles, and
other resources that software developers, architects and
security practitioners can use to build security into software
in every phase of its development.9

•		Software	Assurance	Marketplace, also known as the
SWAMP, was developed to make it much easier to regularly
test the security of software applications and to provide an
online laboratory for software assessment tool inventors
to build stronger tools. It is a no-cost, high-performance,
centralized cloud computing platform that includes an array
of open-source and commercial software security testing
tools, as well as a comprehensive results viewer to simplify
vulnerability remediation. It was funded by DHS and is
located at the Morgridge Institute for Research on the
campus of the University of Wisconsin in Madison.

•		The	SANS	Institute is a cooperative research and
educational organization reaching more than 165,000
security professionals around the world. At the heart of
SANS are the many security practitioners in varied global
organizations, from corporations to universities, working
together to help the entire information security community.

 SANS recently released a report entitled, 2015 State of
Application Security: Closing the Gap, which explores the
current state of application security through the lens of
both builders and defenders.10

Five	Key	Recommendations
With 90% of security incidents resulting from exploits against
defects in software, according to DHS, it is not worth putting
an enterprise at risk by not finding and fixing those defects.
Application security testing needs to be a core part of every
organization’s information security strategy, whether it is
developing its own software or purchasing applications from
other sources.

Application security testing can seem like an overwhelming
undertaking, but it is essential to keeping an organization’s
information assets secure. We conclude this white paper with
five recommendations to help ease the AST process and
minimize the potential for data to be exploited by malicious
attackers.

 1. Variety – adopt all three AST techniques (manual, SAST,
DAST) in limited doses, initially, to determine how best to
integrate them into your SDLC.

 2. Manage – use a software vulnerability management
system to manage the outputs of multiple testing tools to
correlate and normalize results.

 3. Focus – don’t get overwhelmed. Focus on a subset of
the initial findings, as the thousands of weaknesses that will
be identified can’t all be fixed.

 4. Prioritize – focus on the most important weaknesses
first. Starting with the OWASP Top 10 can help you focus
on a well-known subset of critical vulnerabilities.

	 	5.	Integrate – make sure the testing process is part of the
SDLC workflow. It is much less expensive to address issues
early, rather than waiting until after a release is complete.

About Code Dx
Code Dx, Inc. provides easy and affordable software
vulnerability management systems that enable software
developers, testers, and security analysts to find and manage
vulnerabilities in software. The Code Dx solutions integrate
the results of multiple Application Security Testing (AST) tools
and manual reviews into a consolidated set of results for easy
triage, prioritization, and remediation. The core technology
was partially funded by DHS Science & Technology to help
secure the nation’s software supply chain.

7

1. Retrieved August 20, 2015 from https://buildsecurityin.us-cert.gov/

software-assurance.

2. Carol Woody, Robert Ellison and William Nichols, “Predicting Software

Assurance Using Quality and Reliability Measures,” Software Engineering

Institute, December 2014, page 11.

3. Retrieved August 20, 2015 from https://www.owasp.org/index.php/

Category:OWASP_Code_Review_Project.

4. Retrieved August 20, 2015 from https://www.owasp.org/index.php/

Main_Page.

5. Retrieved August 20, 2015 from https://vimeo.com/32421617.

6. Retrieved August 20, 2015 from samate.nist.gov/docs/eval_SA_tools_

MIT_LL_July_2009.ppt.

7. Retrieved August 25, 2015 from: http://codedx.com/ast-glossary/.

8. Retrieved August 20, 2015 from https://www.isaca.org/Pages/default.aspx.

9. Retrieved August 20, 2015 from https://buildsecurityin.us-cert.gov/.

10. Retrieved October 12, 2015 from https://www.sans.org/reading-room/

whitepapers/analyst2015-state-application-security-closing-gap-35942

Footnotes:

6 Bayview Avenue, Northport, NY 11768 • codedx.com
(631) 759-3993 • info@codedx.com

